Visit <u>this link</u> to read the introductory text for this syllabus. | AREAS COMMON TO THE TWO ALTERNATIVES | | ADDITIONAL TO
FOR ALTERN | | | |--------------------------------------|---|---|---|--| | | | | ALTERNATIVE X | ALTERNATIVE Y | | ТОРІС | CONTENT | NOTES | (For Candidates
offering Further
Maths) | (For Candidates
offering Maths
Elective) | | Circular Measure and Radians | Lengths of Arcs of circles
Perimeters of Sectors and
Segments measure in radians | | | | | 2. Trigonometry | (i) Sine, Cosine and
Tangent of angles | For $O^0 \le \theta \le 360^0$ | | | | | (ii) Trigonometric ratios of the angles 30^0 , 45^0 , 60^0 | Identify without use of tables. | | | | | (iii) Heights and distances | | | | | WW' | (iv) Angles of elevation and depression(v) Bearings, Positive and negative angles. | Simple cases only. | U.C | om | | | (vi) Compound and multiple angles. | Their use in simple Identities and solution of trig. ratios. | | | | | (vii) Graphical solution of simple trig. equation. | $a\cos x + b\sin x = c$ | | | | | (viii) Solution of triangles. | Include the notion of radian and trigonometric ratios of negative angles. | | | | 3. Indices, Logarithms | | _ | | | | and Surds. (a) Indices | (i) Elementary theory of Indices. | Meaning of a^0 , a^{-n} , a^n | | | | (b) Logarithms | (ii) Elementary theory of Logarithm | Calculations involving multiplication, division, power and nth | | | | | $\log_a xy = \log_a x + \log_a y,$ | roots: | | | | | $\log_a x_n = n\log_a x$ | $\log a^n, \log \sqrt{a}, \log a^{\frac{n}{n}}$ | | | | | (iii) Applications | Reduction of a relation | | | such as $y = ax^b$, (a, b) are constants to a linear form. $\log_{10} y = b \log_{10} x + \log_{10} a$. Consider other examples such as $y = ab^x$. | AREAS COMMON TO THE TWO ALTERNATIVES | | ADDITIONAL TOPICS /NOTES
FOR ALTERNATIVES | | | |--|---|---|---|---| | ТОРІС | CONTENT | NOTES | ALTERNATIVE X (For Candidates offering Further Maths) | ALTERNATIVE Y (For Candidates offering Maths Elective) | | (c) Surds | Surds of the form $ \underline{a}, a\sqrt{a} \text{ and } a+b\sqrt{n} $ where a is rational. $b \text{ is a positive integer and } n \text{ is } not \ a \text{ perfect square.}$ | Rationalisation of the Denominator: $ \frac{a + \sqrt{b}}{\sqrt{c} - \sqrt{d}} $ | | , | | (d) Sequences:
Linear and
Exponential
sequences | (i) Finite and infinite sequences (ii) U_n = U₁ + (n - 1) d, where <i>d</i> is the common difference. | | | | | WW | (iii) $S_n = \frac{n}{2} (U_1 + U_n)$
(iv) $U_n = U_1 r^{n-1}$
where r is the common ratio.
(v) $S_n = U_1(1-r^n)$; $r < 1$ | ned | U.C | om | | (e) Use of the Binomial Theorem for a positive integral index. | or $S_n = \underline{U_1} \frac{(r^n - 1)}{r - 1}; r > 1$ Proof of Binomial Theorem not required. Expansion of $(a + b)^n$ Use of $(1 + x)^n \approx 1 + nx$ for any rational n , where x is sufficiently small e.g. $0(0.998)^{\frac{7}{3}}$ | | | | | 4. Algebraic Equations | (a) Factors and Factorisation. Solution of Quadratic equations using:- (i) completing the square, (ii) formula. (a) Symmetric properties of the equation ax² + bx + c = 0 | The condition $b^2 - 4ac \ge 0$ for the equation to have real roots. Sum and product of roots. | | | | | (b) Solution of two simultaneous equations where one | Graphical and analytical | | | is linear and the other quadratic. methods permissible. 236 | AREAS COMMON TO THE TWO ALTERNATIVES | | ADDITIONAL TO
FOR ALTERN | | | |---|---|-----------------------------|--|---| | ТОРІС | CONTENT | NOTES | ALTERNATIVE X (For Candidates offering Further Maths) | ALTERNATIVE Y (For Candidates offering Maths Elective) | | 6. Rational Functions and Partial Fractions | (i) Addition, subtraction and multiplication of polynomials. (ii) Factor and remainder theorems (iii) Zeros of a polynomial function. (iv) Graphs of Polynomial functions of degree n ≤ 3. (v)Division of a polynomial of degree not greater than 4 by a Polynomial of lower degree. e.g. f: x → px² + qx + r (i) The four basic operations. (ii) Zeros, domain and range; Sketching not required. | Not exceeding degree 4 | (iii) Resolution of rational functions into partial fractions. Rational functions of the form $Q(x) = \frac{F(x)}{G(x)}$ $G(x) \neq 0$ where $G(x)$ and $F(x)$ are polynomials, $G(x)$ must be factorisable into linear and quadratic factors (Degree of Numerator less than that | | | | | | | | of denominator which is less than or equal to 4) | AREAS COMMON TO THE TWO ALTERNATIVES | | ADDITIONAL TOPICS /NOTES
FOR ALTERNATIVES | | | |--|---|--|---|--| | ТОРІС | CONTENT | NOTES | ALTERNATIVE X (For Candidates offering Further Maths) | ALTERNATIVE Y (For Candidates offering Maths Elective) | | 7. Linear Inequalities | Graphical and Analytical
Solution of simultaneous linear
Inequalities in 2 variables and
Quadratic inequalities. | | | | | 8. Logic | (i) The truth table, using not P or Q , P and Q . P implies Q , Q implies P . | Validity of compound statements involving implications and connectives. | | | | | (ii) Rule of syntax: true or false statements, rule of logic applied to arguments, implications and deductions | Include the use of symbols: $\sim P$ $p \vee q, p \wedge q, p \Rightarrow q$ Use of Truth tables. | | | | 9. Co-ordinate
Geometry:
Straight line | (a) (i) Distance between two points; (ii) Mid-point of a line segment; | ned | U.C | om | | | (iii) Gradient of a line;(iv) Conditions for parallel and perpendicular lines. | Gradient of a line as ratio of vertical change and horizontal change. | | | | | (b) Equation of a line:(i) Intercept form;(ii) Gradient form;(iii) The general form. | | | | | Conic Sections | (c) (i) Equation of a circle; (ii) Tangents and normals are required for circle. | (i) Equation in terms of centre and radius e.g. (x-a)² + (y-b)² = r²; (ii) The general form: x² + y² + 2gx + 2fy + c = 0; | (iii) Equations of parabola in rectangular Cartesian coordinates. | | | 10. Differentiation | (a) (i) The idea of a limit | (i) Intuitive treatment of limit. Relate to the | | | | AREAS COMMON TO THE TWO ALTERNATIVES | | ADDITIONAL TOPICS /NOTES
FOR ALTERNATIVES | | | |--------------------------------------|---|---|---|---| | ТОРІС | CONTENT | NOTES | ALTERNATIVE X (For Candidates offering Further Maths) | ALTERNATIVE Y (For Candidates offering Maths Elective) | | | (ii) The derivative of a function. Application of differentiation Quotier (b) (i) Second derivatives and Rates of change; (ii) Concept of maxima and minima. | (ii) Its meaning and its determination from first principles in simple cases only. e.g. axⁿ + b, n ≤ 3, (n ∈ I) (iii) Differentiation of polynomials e.g. 2x⁴ - 4x³ + 3x² - x + 7 and (a + bxⁿ)^m trules. (i) The equation of a tangent to a curve at a point. (ii) Restrict turning points to maxima and minima. (iii) Include curve sketching (up to cubic functions) and linear kinematics. | (iv) Product and Differentiation of implicit functions such as $ax^2 + by^2 = c$ | OM | | 11. Integration | (i) Indefinite Integral | (i) Exclude n = -1 in ∫xⁿdx. (ii) Integration of sum and difference of polynomials e.g. 4 x³ + 3x² - 6x + 5 include linear kinematics. Relate to the area under a curve. | | | | AREAS COMMON TO THE TWO ALTERNATIVES | | ADDITIONAL TOPICS /NOTES
FOR ALTERNATIVES | | | |--------------------------------------|---|---|---|--| | TOPIC | CONTENT | NOTES | ALTERNATIVE X (For Candidates offering Further Maths) | ALTERNATIVE Y (For Candidates offering Maths Elective) | | | (iii) Applications of the definite integral | (iii) Plane areas and
Rate of change. | | (iii) Volume of solid of revolution. (iv) Approximation restricted to trapezium rule. | | 12. Sets | (i) Idea of a set defined by a property. Set notations and their meanings. (ii) Disjoint sets, Universal set and Complement of set. | $\{x: x \text{ is real}\}, \ \cup, \cap$
empty set $\{\ \}, \ \emptyset, \ \in, \notin, C,$
U (universal set) or $\{\ \}$
A (Complement of set A). | | | | WW' | (iii) Venn diagrams, use of sets and Venn diagrams to solve problems. (iv) Commutative and Associative laws, Distributive properties over union and intersection | ned | U.C | om | | 13. Mappings and Functions | | The notation: e.g.
$f: x \rightarrow 3x + 4$
$g: x \rightarrow x^2$
where $x \in R$. | | | | | (i) Domain and co-domain of a function. | Graphical representation of a function. | | | | | (ii) One-to-one, onto,
identity and constant
mapping; | Image and the range. | | | | | (iii) Inverse of a function; | | | | | | (iv) Composition of functions. | Notation: fog $(x) = f(g(x))$
Restrict to simple
algebraic functions only. | | | | AREAS COMMON TO THE TWO ALTERNATIVES | | ADDITIONAL TOPICS /NOTES
FOR ALTERNATIVES | | | |--|---|--|---|---| | TOPIC | CONTENT | NOTES | ALTERNATIVE X (For Candidates offering Further Maths) | ALTERNATIVE Y (For Candidates offering Maths Elective) | | 14. Matrices: (a) Algebra of Matrices. (b) Linear Transformation | (i) Matrix representation (ii) Equal matrices (iii) Addition of matrices (iv) Multiplication of a Matrix by a scalar. (v) Multiplication of matrices. | Restrict to 2 x 2 matrices Introduce the notation A, B, C for a matrix. (i) The notation I for the unit identity matrix. (ii) Zero or null matrix. | U.C | Some special matrices: (i) Reflection in the x-axis; Reflection in the y-axis. The clockwise and anti-clockwise rotation about the origin. (ii) Inverse of a 2 x 2 matrix; (i) Restrict to the Cartesian plane; (ii) Composition of linear transformation; (iii) Inverse of a linear transformation; (iv) Some special linear transformations: Identity Transformation, Reflection in the x-axis Reflection in the y-axis; Reflection in the line y = x Clockwise and anti-clockwise rotation about the origin. | | AREAS COMMON TO THE TWO ALTERNATIVES | | | ADDITIONAL TOPICS /NOTES
FOR ALTERNATIVES | | |--------------------------------------|--|-------|--|--| | ТОРІС | CONTENT | NOTES | ALTERNATIVE X (For Candidates offering Further Maths) | ALTERNATIVE Y (For Candidates offering Maths Elective) | | (c) Determinants 15. Operations | Binary Operations: Closure, Commutativity, Associativity and Distributivity, Identity elements and inverses. | ned | Evaluation of determinants of 2 x 2 and 3 x 3 matrices. Application of determinants to: (i) Areas of triangles and quadrilaterals. (ii) Solution of 3 simultaneous linear equations | O M | #### PART II STATISTICS AND PROBABILITY | | 51A11511C | S AND PROBABILITY | | DICC NOTES | |--|---|--|---|--| | AREAS CO | OMMON TO THE TWO ALT | ERNATIVES | ADDITIONAL TO
FOR ALTERN | | | | | | ALTERNATIVE X | ALTERNATIVE Y | | ТОРІС | CONTENT | NOTES | (For Candidates
offering Further
Maths) | (For Candidates
offering Maths
Elective) | | Graphical representation of data Measures of location | (i) Frequency tables. (ii) Cumulative frequency tables. (iii) Histogram (including unequal class intervals) (iv) Frequency curves and ogives for grouped data of equal and unequal class intervals. Central tendency; Mean, median, mode, quartiles and percentiles | Include: (i) Mode and modal group for grouped data from a histogram; (ii) Median from grouped data and from ogives; (iii) Mean for grouped data, use of an assumed mean required. | U.C | OM | | 3. Measures of Dispersion | (a) Determination of: (i) Range, Inter-Quartile range from an ogive. (ii) Variance and standard deviation. | Simple applications. For grouped and ungrouped data using an assumed mean or true mean. | | | | 4. Correlation | (i) Scatter diagrams | Meaning of correlation:
positive, negative and
zero correlations from
scatter diagrams. | Rank correlation Spearman's Rank Correlation Coefficient. Use data without ties | | (ii) Line of fit Use of line of best fit to predict one variable from another. Meaning and applications. 243 | of probability requency of Probability. The sample spaces and multiplication of the sample spaces. | NOTES E.g. tossing 2 dice once, drawing balls from a box without replacement. Equally likely events and | ALTERNATIVE X (For Candidates offering Further Maths) | ALTERNATIVE Y (For Candidates offering Maths Elective) | |--|--|---|---| | of probability requency n of Probability. uple sample spaces. and multiplication of | E.g. tossing 2 dice once,
drawing balls from a box
without replacement.
Equally likely events and | offering Further | offering Maths | | equency
n of Probability.
ple sample spaces.
nd multiplication of | drawing balls from a box without replacement. Equally likely events and | | | | | mutually exclusive events only to be used. | Probability Distribution. | | | | | Binomial Probability $P(x = r) = {}^{n}C_{r}p^{r}q^{n-r}$ | | | | | where Probability of success = P | | | .Lai | rned | Probability of failure $= q$, $p + q = 1$ and n is the number of trials. Simple problems only. | om | | ses of number of nts on a line. | e.g. (i) arrangement of students in a row. | | | | | (ii) drawing balls
from a box.
Simple problems
only. | | | | | ${\rm P}_{\rm r} = \frac{\rm n!}{\rm (n-r)!}$ | | | | | $^{n}C_{\Gamma} = \frac{n!}{r!(n-r)!}$ | | | | | ses of combination | from a box. Simple problems only. | from a box. Simple problems only. $ P_{r} = \frac{n!}{(n-r)!} $ sees of combination $ P_{r} = \frac{n!}{(n-r)!} $ | ### PART III VECTORS AND MECHANICS | AREAS COMMON TO THE TWO ALTERNATIVES | | | ADDITIONAL TO
FOR ALTERN | | |--------------------------------------|---|--|---|--| | ТОРІС | CONTENT | NOTES | ALTERNATIVE X (For Candidates offering Further Maths) | ALTERNATIVE Y (For Candidates offering Maths Elective) | | 1. Vectors | (i) Definitions of scalar and vector quantities. | | | | | WW | (iii) Representation of Vectors. (iii) Algebra of vectors. | (iii) Addition and subtraction of vectors, Multiplication of vector by vectors and by scalars. Equation of vectors. | U.C | om | | | (iv) Commutative, Associative and Distributive properties. | (iv) Illustrate through diagram, diagrammatic representation. Illustrate by solving problems in elementary plane geometry e.g. concurrency of medians and diagonals. | | | | | (v) The parallelogram Law. | The notation | | | | | (vi) Unit Vectors. | i for the unit vector \[\begin{pmatrix} 1 \\ 0 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | | | | | | along the *x* and *y* axis respectively. (vii) Position and free Vectors. 245 | | | TERNATIVES | FOR ALTERNATIVE X | NATIVES ALTERNATIVE Y | |------------|--|---|--|--| | ТОРІС | CONTENT | NOTES | (For Candidates offering Further Maths) | (For Candidates offering Maths Elective) | | | (viii) Resolution and Composition of Vectors. | (viii) Not more than three vectors need be composed. | | | | | (ix) Scalar (dot) product and its application. | Using the dot product to establish such trigonometric formulae as (i) $\cos(a \pm b) = \cos a$ | | | | | | $\cos b \pm \sin a \sin b$ (ii) $\sin (a \pm b) = \sin a$ $\cos b \pm \sin b \cos a$ (iii) $c^2 = a^2 + b^2 - 2ab \cos c$ | | | | 2. Statics | (i) Definition of a force. | Finding angle between two vectors. | lu.c | On | | | (ii) Representation of Forces. | | | | | | (iii) Composition and resolution of coplanar forces acting at a point. | | | | | | (iv) Equilibrium of particles. | (iv) Apply to simple problems e.g. suspension of particles by strings. | | | | | (v) Lami's theorem | (v) Apply to simple problems on equivalent system of forces. | | | | | (vi) Determination of Resultant. | | (vi) Composition
and resolution
of general
coplanar
forces on rigid
bodies. | | | | | | (viii) Moments of forces. | | ### $WASSCE \, / \, WAEC \, ELECTIVE \, / \, FURT \underline{H}ER \, \, MATHEMATICS \, SYLLABUS$ | AREAS COMMON TO THE TWO ALTERNATIVES | | | ADDITIONAL TOPICS /NOTES
FOR ALTERNATIVES | | |--------------------------------------|--|---|---|---| | ТОРІС | CONTENT | NOTES | ALTERNATIVE X (For Candidates offering Further Maths) | ALTERNATIVE Y (For Candidates offering Maths Elective) | | | | | | Friction: Distinction between smooth and rough planes. Determination of the coefficient of friction required. | | 3. Dynamics | (a) (i) The concepts of Motion, Time and Space. (ii) The definitions of displacement, velocity, acceleration and speed. (iii) Composition of velocities and accelerations. (b) Equations of motion (i) Rectilinear motion; (ii) Newton's Law of motion. (iii) Consequences of Newton's Laws: The impulse and momentum equations: Conservation of Linear Momentum. | Application of the equations of motions:
V = u + at;
$S = ut + \frac{1}{2} at^2$;
$V^2 = u^2 + 2as$. | U.C | OM | | | (iv) Motion under gravity. | | Motion along inclined planes. | | Visit <u>www.Larnedu.com</u> for WASSCE / WAEC Syllabus on different subjects. <u>Larnedu</u> also provides other resources and information to help you ace the WASSCE.