Uploaded on: www.speedyminds.com

FURTHER MATHEMATICS/MATHEMATICS (ELECTIVE)

AIMS OF THE SYLLABUS

The aims of the syllabus are to test candidates'
(i) development of further conceptual and manipulative skills in Mathematics;
(ii) understanding of an intermediate course of study which bridges the gap between Elementary Mathematics and Higher Mathematics;
(iii) acquisition of aspects of Mathematics that can meet the needs of potential Mathematicians, Engineers, Scientists and other professionals.
(iv) ability to analyse data and draw valid conclusion
(v) logical, abstract and precise reasoning skills.

EXAMINATION SCHEME

There will be two papers, Papers 1 and 2, both of which must be taken.
PAPER 1: will consist of forty multiple-choice objective questions, covering the entire syllabus. Candidates will be required to answer all questions in $1 \frac{1}{2}$ hours for 40 marks. The questions will be drawn from the sections of the syllabus as follows:

Pure Mathematics - 30 questions
Statistics and probability - 4 questions
Vectors and Mechanics - 6 questions
PAPER 2: will consist of two sections, Sections A and B, to be answered in $2 \frac{1}{2}$ hours for 100 marks.

Section A will consist of eight compulsory questions that areelementary in type for 48 marks. The questions shall be distributed as follows:

Pure Mathematics	-	4 questions
Statistics and Probability	-	2 questions
Vectors and Mechanics	-	2 questions

Section B will consist of seven questions of greater length and difficulty put into three parts:Parts I, II and III as follows:

$$
\text { Part I: Pure Mathematics } \quad-\quad 3 \text { questions }
$$

Part II: Statistics and Probability $-\quad 2$ questions
Part III: Vectors and Mechanics \quad - 2 questions

Candidates will be required to answer four questions with at least one from each part for 52 marks.

DETAILED SYLLABUS

In addition to the following topics, more challenging questions may be set on topics in the General Mathematics/Mathematics (Core) syllabus.

In the column for CONTENTS, more detailed information on the topics to be tested is given while the limits imposed on the topics are stated under NOTES.

Topics which are marked with asterisks shall be tested in Section B of Paper 2 only.

KEY:

* Topics peculiar to Ghana only.
** Topics peculiar to Nigeria only

Topics	Content	Notes
I. Pure Mathematics (1) Sets (2) Surds	(i) Idea of a set defined by a property, Set notations and their meanings. (ii) Disjoint sets, Universal set and complement of set (iii) Venn diagrams, Use of sets And Venn diagrams to solve problems. (iv) Commutative and Associative laws, Distributive properties over union and intersection. Surds of the form $\frac{a}{\sqrt{b}}, a \sqrt{b}$ and $\mathrm{a}+\mathrm{b} \sqrt{n}$ where a is rational, b is a positive integer and n is not a	$\begin{aligned} & (x: x \text { is real }), \cup, \cap,\{ \}, \notin, \in, \\ & \subset, \subseteq, \end{aligned}$ U (universal set) and A^{\prime} (Complement of set A). More challenging problems involving union, intersection, the universal set, subset and complement of set. Three set problems. Use of De Morgan's laws to solve related problems All the four operations on surds Rationalising the denominator of surds such as $\frac{a}{\sqrt{b}}, \frac{a+\sqrt{b}}{c-\sqrt{d}}$,

(3) Binary Operations	perfect square.	$\frac{a+\sqrt{b}}{\sqrt{c}-\sqrt{d}} .$
	Properties: Closure, Commutativity, Associativity and Distributivity, Identity elements and inverses.	Use of properties to solve related problems.
(4) Logical Reasoning	(i) Rule of syntax: true or false statements, rule of logic applied to arguments, implications and deductions.	Using logical reasoning to determine the validity of compound statements involving implications and connectivities. Include use of symbols: $\sim P$ $\mathrm{p} v \mathrm{q}, \mathrm{p} \wedge \mathrm{q}, \mathrm{p} \Rightarrow \mathrm{q}$
	(ii) The truth table	Use of Truth tables to deduce conclusions of compound statements. Include negation.
(5) Functions	(i) Domain and co-domain of a function.	The notation e.g. $f: x \rightarrow$ $3 x+4 ;$
	(ii) One-to-one, onto, identity and constant mapping;	$g: x \rightarrow \mathrm{x}^{2}$; where $\mathrm{x} \in \boldsymbol{R}$.
		Graphical representation of a function ; Image and the range.
	(iii) Inverse of a function.	Determination of the inverse
	(iv) Composite of functions.	of a one-to-one function e.g. If $\mathrm{f}: \mathrm{x} \rightarrow \mathrm{sx}+\frac{4}{3}$, the inverse relation $\mathrm{f}^{-1}: \mathrm{x} \rightarrow \frac{1}{3} \mathrm{x}-\frac{4}{9}$ is also a function.
(6) Polynomial Functions	(i) Linear Functions, Equations and	Notation: $\quad \mathrm{fog}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))$ Restrict to simple algebraic functions only.
	Inequality	Recognition and sketching of graphs of linear functions and equations. Gradient and intercepts forms of linear equations i.e. $a x+b y+c=0 ; y=m x+c ;$ $\frac{y}{a}+\frac{x}{b}=\mathrm{k}$. Parallel and Perpendicular lines. Linear

	(ii) Quadratic Functions, Equations and Inequalities (ii) Cubic Functions and Equations	$\begin{aligned} & \text { Inequalities e.g. } 2 x+5 y \leq 1 \\ & x+3 y \geq 3 \end{aligned}$ Graphical representation of linear inequalities in two variables. Application to Linear Programming. Recognition and sketching graphs of quadratic functions e.g. $\mathrm{f}: \mathrm{x} \rightarrow \mathrm{ax}{ }^{2}+\mathrm{bx}+\mathrm{c}$, where a, b and $c \in R$. Identification of vertex, axis of symmetry, maximum and minimum, increasing and decreasing parts of a parabola. Include values of x for which $f(x)>0$ or $f(x)<0$. Solution of simultaneous equations: one linear and one quadratic. Method of completing the squares for solving quadratic equations. Express $f(x)=a x^{2}+b x+c$ in the form $f(x)=a(x+d)^{2}+k$, where k is the maximum or minimum value. Roots of quadratic equations - equal roots ($b^{2}-4 a c=0$), real and unequal roots ($b^{2}-4 a c>0$), imaginary roots ($b^{2}-4 a c<$ 0); sum and product of roots of a quadratic equation e.g. if the roots of the equation $3 x^{2}$ $+5 x+2=0$ are α and β, form the equation whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$. Solving quadratic inequalities. Recognition of cubic functions e.g. f: $x \rightarrow a x^{3}+b x^{2}+c x+d$. Drawing graphs of cubic functions for a given range. Factorization of cubic expressions and solution of cubic equations. Factorization of $a^{3} \pm b^{3}$. Basic operations on polynomials, the remainder

(7) Rational Functions (8) Indices and Logarithmic Functions	(i) Rational functions of the form $\mathrm{Q}(\mathrm{x})=\frac{f(x)}{g(x)}, g(x) \neq 0$. where $g(x)$ and $f(x)$ are polynomials. e.g. $\mathrm{f}: \mathrm{x} \rightarrow \frac{a x+b}{p x^{2}+q x+r}$ (ii) Resolution of rational functions into partial fractions. (i) Indices (ii) Logarithms	and factor theorems i.e. the remainder when $f(x)$ is divided by $f(x-a)=f(a)$. When $f(a)$ is zero, then $(x-a)$ is a factor of $f(x)$. $g(x)$ may be factorised into linear and quadratic factors (Degree of Numerator less than that of denominator which is less than or equal to 4). The four basic operations. Zeros, domain and range, sketching not required. Laws of indices. Application of the laws of indices to evaluating products, quotients, powers and nth root. Solve equations involving indices. Laws of Logarithms. Application of logarithms in calculations involving product, quotients, power $\left(\log a^{n}\right)$, nth roots $\left(\log \sqrt{a}, \log a^{1 / n}\right)$. Solve equations involving logarithms (including change of base). Reduction of a relation such as $y=a x^{b},(a, b$ are constants) to a linear form: $\log _{10} y=b \log _{10} x+\log _{10} a$.

(9) Permutation And Combinations.		Consider other examples such as $\begin{aligned} \log a b^{x} & =\log a+x \log b ; \\ \log (a b)^{x} & =x(\log a+\log b) \\ & =x \log a b \end{aligned}$ *Drawing and interpreting graphs of logarithmic functions e.g. $y=a x^{b}$. Estimating the values of the constants a and b from the graph
	(i) Simple cases of arrangements (ii) Simple cases of selection of objects.	Knowledge of arrangement and selection is expected. The notations: ${ }^{n} C_{r},\binom{n}{r}$ and ${ }^{n} P_{r}$ for selection and arrangement respectively should be noted and used. e.g. arrangement of students in a row, drawing balls from a box with or without replacements. $\begin{aligned} & { }^{{ }^{n}} \mathrm{P}_{\mathrm{r}}=\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{r})!} \\ & { }^{{ }^{n} C_{r}=}{ }^{n!} \\ & \mathrm{r!}(\mathrm{n}-\mathrm{r})! \end{aligned}$
(10) Binomial Theorem (11) Sequences and Series	Expansion of $(a+b)^{n}$. Use of $(1+x)^{n} \approx 1+n x$ for any rational n, where x is sufficiently small. e.g (0.998) ${ }^{1 / 3}$ (i) Finite and Infinite sequences.	Use of the binomial theorem for positive integral index only. Proof of the theorem not required.
	(ii) Linear sequence/Arithmetic Progression (A.P.) and Exponential sequence/Geometric Progression (G.P.) (iii) Finite and Infinite series.	e.g. (i) $u_{1}, u_{2}, \ldots, u_{n}$. (ii) $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots$ Recognizing the pattern of a sequence. e.g. (i) $\mathrm{U}_{\mathrm{n}}=\mathrm{U}_{1}+(\mathrm{n}-1) \mathrm{d}$, where d is the common difference. (ii) $U_{n}=U_{1} r^{n-1}$ where r is the common ratio.
	(iv) Linear series (sum of A.P.) and	(i) $U_{1}+U_{2}+U_{3}+\ldots+U_{n}$ (ii) $U_{1}+U_{2}+U_{3}+\ldots$.

(12)Matrices and Linear Transformation	exponential series (sum of G.P.) *(v) Recurrence Series	(i) $\mathrm{S}_{\mathrm{n}}=\frac{n}{2}\left(\mathrm{U}_{1}+\mathrm{U}_{\mathrm{n}}\right)$ (ii) $\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 a+(n-1) d]$ (iii) $S_{n}=\frac{U_{1}\left(1-r^{n}\right)}{1-r}, r<1$ (iv) $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{U}_{1}\left(\mathrm{r}^{\mathrm{n}}-1\right)}{\mathrm{r}-1}, \mathrm{r}>\mathrm{l}$. (v) Sum to infinity $(\mathrm{S})=$ $\frac{a}{1-r}$ $r<1$ Generating the terms of a recurrence series and finding an explicit formula for the sequence e.g. $0.9999=$ $\frac{9}{10}+\frac{9}{10^{2}}+\frac{9}{10^{3}}+\frac{9}{10^{4}}+\ldots$
	(ii) Determinants	Concept of a matrix - state the order of a matrix and indicate the type. Equal matrices - If two matrices are equal, then their corresponding elements are equal. Use of equality to find missing entries of given matrices Addition and subtraction of matrices (up to 3×3 matrices). Multiplication of a matrix by a scalar and by a matrix (up to 3 x 3 matrices) Evaluation of determinants of 2×2 matrices. **Evaluation of determinants of 3×3 matrices.
	(iii) Inverse of 2×2 Matrices (iv) Linear Transformation	Application of determinants to solution of simultaneous linear equations. e.g. If $\mathrm{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then

(13)Trigonometry	(i) Trigonometric Ratios and Rules	$\mathrm{A}^{-1}=\frac{1}{a d-b c}-\mathrm{d}\binom{-b}{a}$ Finding the images of points under given linear transformation Determining the matrices of given linear transformation. Finding the inverse of a linear transformation (restrict to 2 x 2 matrices). Finding the composition of linear transformation. Recognizing the Identity transformation. (i) $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ reflection in the $x-a x i s$ (ii) $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ reflection in the y-axis (iii) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ reflection in the line $y=x$ (iv) $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ r anticlockwise rotation through θ about the origin. (v) $\left(\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right)$, the general matrix for reflection in a line through the origin making an angle θ with the positive x-axis. *Finding the equation of the image of a line under a given linear transformation Sine, Cosine and Tangent of general angles ($0^{\circ} \leq \theta \leq 360^{\circ}$). Identify trigonometric ratios of angles $30^{\circ}, 45^{\circ}, 60^{\circ}$ without use of tables. Use basic trigonometric ratios and reciprocals to prove given trigonometric identities. Evaluate sine, cosine and tangent of negative angles. Convert degrees into radians

(14)Co-ordinate Geometry	(ii) Compound and Multiple Angles. (iii) Trigonometric Functions and Equations	and vice versa. Application to real life situations such as heights and distances, perimeters, solution of triangles, angles of elevation and depression, bearing(negative and positive angles) including use of sine and cosine rules, etc, Simple cases only. $\sin (A \pm B), \cos (A \pm B)$, $\tan (A \pm B)$. Use of compound angles in simple identities and solution of trigonometric ratios e.g. finding $\sin 75^{\circ}, \cos 150^{\circ}$ etc, finding tan 45° without using mathematical tables or calculators and leaving your answer as a surd, etc. Use of simple trigonometric identities to find trigonometric ratios of compound and multiple angles (up to 3A). Relate trigonometric ratios to Cartesian Coordinates of points (x, y) on the circle $x^{2}+$ $y^{2}=r^{2}$. $f: x \rightarrow \sin x$, $g: x \rightarrow a \cos x+b \sin x=c$. Graphs of sine, cosine, tangent and functions of the form $a \sin x+b \cos x$. Identifying maximum and minimum point, increasing and decreasing portions. Graphical solutions of simple trigonometric equations e.g. $a \sin x+b \cos x=k$. Solve trigonometric equations up to quadratic equations e.g. $2 \sin ^{2} x-\sin x-3=0$, for $0^{\circ} \leq$ $x \leq 360^{\circ}$. *Express $f(x)=a s i n x+b c o s$ x in the form $\mathrm{Rcos}(\mathrm{x} \pm \alpha)$ or

(15)Differentiation	(ii) Conic Sections	$\operatorname{Rsin}(x \pm \alpha)$ for $0^{\circ} \leq \alpha \leq$ 90° and use the result to calculate the minimum and maximum points of a given functions. Mid-point of a line segment Coordinates of points which divides a given line in a given ratio. Distance between two points; Gradient of a line; Equation of a line: (i) Intercept form; (ii) Gradient form; Conditions for parallel and perpendicular lines. Calculate the acute angle between two intersecting lines e.g. if m_{1} and m_{2} are the gradients of two intersecting lines, then $\tan \theta=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}$. If $m_{1} m_{2}=-1$, then the lines are perpendicular. *The distance from an external point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to a given line $a x+b y+c$ using the formula $\mathrm{d}=\left\|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right\|$. Loci of variable points which move under given conditions Equation of a circle: (i) Equation in terms of centre, (a, b), and radius, r , $(x-a)^{2}+(y-b)^{2}=r^{2}$ (ii) The general form: $x^{2}+y^{2}+2 g x+2 f y+c=0$, where $(-g,-f)$ is the centre and radius, $\mathrm{r}=\sqrt{a^{2}+b^{2}-c}$. Tangents and normals to circles Equations of parabola in rectangular Cartesian

		Central tendency: mean, median, mode, quartiles and percentiles. Mode and modal group for grouped data from a
histogram.		
Median from grouped data.		
Mean for grouped data (use of		
an assumed mean required).		
(iv) Correlation		Determination of: (i) Range, Inter- Quartile and Semi inter-quartile range
from an Ogive.		

		$\begin{array}{l}\text { Conservation of Linear } \\ \text { Momentum(exclude coefficient } \\ \text { of restitution). } \\ \text { Distinguish between } \\ \text { momentum and impulse. }\end{array}$

1. UNITS

Candidates should be familiar with the following units and their symbols.

(1) Length

1000 millimetres $(\mathrm{mm})=100$ centimetres $(\mathrm{cm})=1$ metre (m).
1000 metres $=1$ kilometre (km)

(2) Area

10,000 square metres $\left(\mathrm{m}^{2}\right)=1$ hectare (ha)

(3) Capacity

1000 cubic centimeters $\left(\mathrm{cm}^{3}\right)=1$ litre (I)

(4) Mass

1000 milligrammes $(\mathrm{mg})=1$ gramme (g)
1000 grammes (g) = 1 kilogramme(kg)
1000 ogrammes $(\mathrm{kg})=1$ tonne.

(5) Currencies

The Gambia	-	100 bututs $(\mathrm{b})=1$ Dalasi (D)
Ghana	-	100 Ghana pesewas $(\mathrm{Gp})=1$ Ghana Cedi $(\mathrm{GH} \Phi)$
Liberia	-	100 cents $(\mathrm{c})=1$ Liberian Dollar (LD)
Nigeria	-	100 kobo $(\mathrm{k})=1$ Naira ($\#)$
Sierra Leone	-	100 cents $(\mathrm{c})=1$ Leone $($ Le $)$
UK	-	100 pence $(\mathrm{p})=1$ pound $(£)$

USA - 100 cents (c) = 1 dollar (\$)
French Speaking territories 100 centimes (c) = 1 Franc (fr)
Any other units used will be defined.

2. OTHER IMPORTANT INFORMATION

(1) Use of Mathematical and Statistical Tables

Mathematics and Statistical tables, published or approved by WAEC may be used in the examination room. Where the degree of accuracy is not specified in a question, the degree of accuracy expected will be that obtainable from the mathematical tables.

(2) Use of calculators

The use of non-programmable, silent and cordless calculators is allowed. The calculators must, however not have a paper print out nor be capable of receiving/sending any information. Phones with or without calculators are not allowed.

(3) Other Materials Required for the examination

Candidates should bring rulers, pairs of compasses, protractors, set squares etc required for papers of the subject. They will not be allowed to borrow such instruments and any other material from other candidates in the examination hall.
Graph papers ruled in 2 mm squares will be provided for any paper in which it is required.

(4) Disclaimer

In spite of the provisions made in paragraphs 2 (1) and (2) above, it should be noted that some questions may prohibit the use of tables and/or calculators.

